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Abstract
We study the search kinetics of an immobile target by a concentration of
randomly moving searchers. The object of the study is to optimize the
probability of detection within the constraints of our model. The target is
hidden on a one-dimensional lattice in the sense that searchers have no a priori
information about where it is, and may detect it only upon encounter. The
searchers perform random walks in discrete time n = 0, 1, 2, . . . , N , where N
is the maximal time the search process is allowed to run. With probability α the
searchers step on a nearest-neighbour, and with probability (1−α) they leave the
lattice and stay off until they land back on the lattice at a fixed distance L away
from the departure point. The random walk is thus intermittent. We calculate the
probability PN that the target remains undetected up to the maximal search time
N , and seek to minimize this probability. We find that PN is a non-monotonic
function of α, and show that there is an optimal choice αopt(N) of α well
within the intermittent regime, 0 < αopt(N) < 1, whereby PN can be orders of
magnitude smaller compared to the ‘pure’ random walk cases α = 0 and α = 1.

1. Introduction

Everybody searches for something: predators look for prey, prey forage, human beings look
for better places to work or for lost keys or for partners, spies search for hidden secrets, and
knights desperately seek the Holy Grail, whatever it may be.

The search for a desired target may be long and uncertain; targets may be sparse, hidden or
difficult to detect even when found, or they may have their own lifetime and vanish before they
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are detected. That is why efficient search strategies appropriate to specific types of situations
are highly desirable. The question of optimal search strategies has motivated a great deal of
work within the last years [1–12].

While earlier work has focused on systematic searches in organized human activities such
as rescue operations [1–4], more recent analyses have been devoted to random strategies [5–11].
In particular, it has been realized that in the case of the so-called non-destructive search,
when the target reappears after some time at the same location, and when the searcher always
remains within the system, Lévy flights with randomly reoriented ballistic trajectories provide
an optimal search efficiency [5–9]. On the other hand, following the observation of trajectories
of foraging animals such as lizards or fish or birds characterized by two distinct types of
motion—fast relocation stages non-receptive to the target and relatively slow reactive phases
when the target may be detected [13, 14]—another type of random search, an intermittent
search, has been proposed. Analytical modelling of such random intermittent search strategies
has been put forth in [11] (see also [12]).

In this paper we discuss the search for a single target hidden on a one-dimensional regular
lattice by a concentration of searchers performing intermittent random walks. In particular,
at each tick of the clock each of the searchers chooses between two possibilities. One is to
jump to a nearest-neighbouring lattice site, and the other is to leave the lattice and fly with a
given velocity until it lands back on the lattice at a fixed distance L from the departure site.
The term ‘hidden’ means that the searchers can detect the target only upon landing directly on
the target site at the end of a flight, or via a one-step (nearest-neighbour) walk onto that site.
Intermittency has been invoked in other models (e.g., see the models proposed in [11, 12]) and
has been observed in a number of ecological and other contexts (see, e.g., [13, 14]), but all the
other features of our model are, to the best of our knowledge, new.

Contrary to previous work, which focused on the analysis and optimization of the first pas-
sage time to the target from a given location, or on the number of targets encountered [5–11],
here we study the behaviour of a different property, namely, the probability that a single target
remains undetected up to the maximal search time N . We cannot, of course, make this random
search process certain; that is, we cannot guarantee that the target is found (or not found) with
unit probability in a finite time, but what we are able to show is that the non-detection probabil-
ity is a non-monotonic function of the parameter α which determines whether a searcher takes
a nearest-neighbour step (probability α) or a long flight [probability (1 − α)], and that it has a
sharp minimum at some value of α. Consequently, we show that the search efficiency can be
dramatically enhanced, by orders of magnitude, by choosing an appropriate value of α.

The outline of this paper is as follows. In section 2 we describe our model of intermittent
random walks, present definitions, and delineate our main results. In section 3 we derive a
general formula for the non-detection probability. Section 4 is devoted to the analysis of
different properties of the intermittent random walk. In section 5 we focus on a particular
exactly solvable case, namely, a Lindenberg–Shuler intermittent walk with steps of unit length
and flights of two lattice spacings. For this example we discuss the specific features of the
optimization procedure. Next, in section 6 we consider the general case of intermittent random
walks with steps of unit length and flights of fixed length L, and define an optimal search
strategy. Finally, in section 7 we conclude with a brief summary of our results and an outlook
for future work.

2. The model, basic notation and results

Consider a one-dimensional regular, infinite in both directions, lattice of unit spacing. This is
the substrate. At one of the lattice sites, say at the origin s = 0, we hide an immobile target,
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Figure 1. A sketch of a seven-step trajectory of an intermittent random walk, starting at s(0), with
nearest-neighbour steps (probability α) and off-lattice flights (probability (1 − α)) over a distance
L (here, L = 7). The arrows indicate the step direction. Note that this trajectory does not find the
target.

and only we know that it is there. Then, we place searchers in the lattice, at random and with
mean density ρ, under the constraint that none of them is placed at the site with the hidden
target. The searchers have no knowledge of the location of the target.

Next, we let the searchers move according to the following rule (see figure 1): at each tick
of the clock, n = 1, 2, 3, . . . , N (N is the maximal time the search process may run), each
searcher selects randomly between two possibilities. With probability α, the searcher jumps to
one of its nearest neighbouring sites, with equal probabilities to the right or to the left. With
probability (1 − α), the searcher leaves the lattice and flies off-lattice with a given velocity V
until it lands at a site an fixed integer distance L away from the departure site. The direction
of the flight is chosen at random, with equal probabilities to right or left. The time the searcher
spends off-lattice during a flight is T = L/V , a model parameter that can have integer values
T = 1, 2, . . . , L. Note that this value defines the velocity V .

As stated earlier, the term ‘hidden’ means that a searcher cannot perceive the target when it
is off-lattice and may detect it only when it lands on the target site. The searcher may land there
at the end of a flight or by a one-step jump. Once the searcher lands on the target site, one can
define an elementary detection probability q . The target may immediately be recognized when
first encountered by a searcher (q ≡ 1, perfect detection), or detection may take place with a
given probability 0 < q < 1. In the latter case, when any of the searchers arrives at the site
occupied by the target, there is always a possibility that the target remains undetected (imperfect
detection). Here we focus on the perfect detection case. Some aspects of the search kinetics
in the imperfect detection case for the one-dimensional system will be discussed briefly in
section 7. An extension of the model to d-dimensional spaces and some other subtle questions
not pursued here will be discussed elsewhere [15].

Our first goal is to determine the probability PN that the target remains undetected up
to time N , the maximal time the search process is allowed to run, which merely depends on
our patience or on experimental constraints. We show in the next section that in the perfect
detection limit the probability PN that no searcher has reached the target up to time N obeys
the standard formula (see, e.g. [16, 17] for more details)

PN = exp(−ρSN ), (2.1)

where SN is the expected value of the number of distinct sites visited on the substrate by any
searcher in an N-step walk (see, e.g., [18]). This is a crucial equation, since we will arrive at
results for PN via calculations of SN .

We will calculate SN explicitly for the intermittent random walk and determine its
asymptotic behaviour analytically in the large-N limit. Using these results, we set out to
show that there always exists a value α = αopt(N), 0 < αopt(N) < 1, which maximizes
the expected number of distinct substrate sites visited by an intermittent random walk up to
time N . Consequently, it minimizes the probability PN in equation (2.1). We demonstrate that
by choosing this optimal value of α the non-detection probability PN in equation (2.1) can be
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made orders of magnitude smaller than those of the ‘pure’ cases α = 1 (nearest-neighbour
steps only) or α = 0 (flights only), for which asymptotically

PN (α = 1) = exp

[
−ρ

(
8N

π

)1/2

+ O
(

1√
N

)]
, (2.2)

and

PN (α = 0) = exp

[
−ρ

(
8N

πT

)1/2

+ O
(

1√
N

)]
. (2.3)

The result (2.2) is well-known and reflects the fact that a random walk in low-dimensional
systems (d = 1 and d = 2) compactly explores the space; that is, SN grows sublinearly with
time N , and each site ever visited by such a walk is most probably visited many times. Hence,
searching a target in a low-dimensional system with the help of a standard random walk is not
very efficient, since the walker wastes a lot of time revisiting sites that do not contain the target.
The result (2.2) is the same with the replacement N → N/T (i.e., it is the same as that of a
nearest-neighbour random walk for a shorter time). This further decreases the probability of
detection because it does not explore the local regions at all before making a jump to a site
that has probably been visited many times before. It is thus not an efficient search strategy
either. We find that although the sublinear growth of SN is unavoidable in any one-dimensional
random walk, and, even more specifically, the asymptotic dependence SN ∝ N1/2, for fixed L
it is possible to optimize the search strategy via an intermittent walk with a particular choice of
α that depends on the length of the walk (calculated explicitly later). We obtain the asymptotic
result

PN (α = αopt(N)) ∼ exp

[
−ρ (LV )1/2

(
8N

π

)1/2

+ ργ (L)

(
8N

π

)1/6

+ o
(
N1/6

)]
, (2.4)

where γ (L) is an increasing function of the flight distance L. Note that the leading term in the
exponent contains a pre-factor (LV )1/2, V = 1, 2, 3, . . . , L, which can make it considerably
larger than the corresponding terms in equations (2.3) and (2.2) and thus may result in a
substantial increase of the detection probability.

3. Non-detection probability

In this section we define the probability PN that the target is not detected up to time N ,
and express it using well-known properties of random motion that have been extensively
discussed in the literature (see, e.g., [17, 18] and references therein). In particular, we begin by
introducing the notation s(n) to denote the random process that describes a searcher’s trajectory,
and P(s|s(0); n) to denote the probability that s(n), which is initially at site s(0), is at site s
at time n. We find it useful to present the derivation because, contrary to most studies, we are
interested in defining the number of distinct sites visited by s(n) only on the substrate, which
is a subset of all available space. Indeed, most existing work concerns random walks that never
leave the lattice so that the equality

∑
s P(s|s(0); n) ≡ 1 holds at all times. In our case this

probability is not conserved,
∑

s P(s|s(0); n) < 1, since the searchers spend some portion of
their time off-lattice. We present this analysis in the most general case, assuming only that s(n)

is a homogeneous process.
Suppose first that the lattice is finite, containing M + 1 sites, and that there are altogether

K searchers labelled k = 1, 2, . . . , K , and let sk(n) denote a given n-step trajectory of the kth
searcher. Subsequently we will turn to the thermodynamic limit, setting K , M → ∞ while
keeping the ratio ρ = M/K fixed.
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Then, in the perfect detection case the indicator function �
({sk(N)}) of the event that the

target has not been detected up to time N for (arbitrary) given trajectories of all K searchers
can be written as

�({sk(N)}) =
K∏

k=1

N∏
n=0

[1 − I (sk(n))], I (s) =
{

1, s = 0,

0, s �= 0.
(3.1)

This indicator function has the correct behaviour, namely, for this particular set of trajectories
� = 0 if any searcher hits the target and � = 1 if none do. All searchers are assumed to move
independently. Averaging �({sk(N)}) over all trajectories and initial positions thus yields the
probability PN that none of the searchers has ever reached the site s = 0 up to time N ,

PN =
[

1

M

∑
s(0)

′
Es(0)

{
N∏

n=0

[1 − I (s(n))]
}]K

=
[

1 − 1

M

∑
s(0)

′
Es(0)

{
1 −

N∏
n=0

(1 − I (s(n)))

}]K

, (3.2)

where Es(0) {· · ·} stands for the average over all trajectories starting at site s(0), and the prime
on the sum indicates the exclusion of the target site s(0) = 0. Note that the summation extends
over all non-target sites of the substrate, a one-dimensional lattice, and does not include off-
lattice contributions. In the thermodynamic limit we set K , M → ∞ keeping their ratio fixed,
K/M = ρ = density of searchers, to obtain

PN = exp

[
−ρ

∑
s(0)

′
Es(0)

{
1 −

N∏
n=0

[1 − I (s(n))]
}]

. (3.3)

Since s(n) is a homogeneous process, equation (3.3) can be rewritten as

PN = exp

[
−ρE0

{∑
s

(
1 −

N∏
n=0

[1 − I (s′(n) − s)]
)}]

, (3.4)

where now E0 {· · ·} denotes an average over trajectories of an auxiliary process s ′(n) =
s(n) − s(0) which starts at the origin at n = 0. Note that the indicator function (1 −∏N

n=0[1 − I (s ′(n) − s)]) shows whether the site s on the substrate has ever been visited by
the process s ′(n), n = 0, 1, 2, . . . , N . Consequently, the sum over all substrate sites is just the
realization-dependent number of distinct sites visited by an individual searcher, and its average
leads directly to the crucial equation (2.1).

For this proof to be useful in calculating PN we next need to calculate SN . For this purpose,
note that the function in the exponent of (3.3), {1−∏N

n=0[1− I (s(n))]}, is the indicator function
of the event that s(N) has at least once visited the origin, so that∑

s(0)

′
Es(0)

{
1 −

N∏
n=0

[1 − I (s(n))]
}

=
∑
s(0)

′
RN (0|s(0)), (3.5)

where RN (0|s(0)) is the probability that an arbitrary N-step random process s(N) has visited
the origin at least once. We can therefore write

PN = exp

(
−ρ

∑
s(0)

′
RN (0|s(0))

)
. (3.6)

Next we note that, by definition, RN (0|s(0)) can be formally represented as

RN (0|s(0)) =
N∑

n=0

Fn(0|s(0)), (3.7)
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where Fn(0|s(0)) is the probability that s(n) arrived at the origin for the first time on the nth
step, given that it started at site s(0). Applying the theory of recurrent events (see, e.g., [18]),
the event that s(n) is at site 0 after n steps can be decomposed into the n mutually exclusive
events ‘s(n) first arrived at site 0 after j steps, and subsequently returned to site 0 in (n − j)
steps’. This allows us to write for the distribution function P(0|s(0); n) the discrete ‘integral
equation’

P(0|s(0); n) = δ0,s(0)δn,0 +
n∑

j=1

Fj (0|s(0))P(0|0; n − j), (3.8)

which implies that the generating functions

P(s|s(0); z) =
∞∑

n=0

P(s|s(0); n)zn,

F(s|s(0); z) =
∞∑

n=0

Fn(s|s(0))zn (3.9)

at s = 0 are simply related to each other,

F(0|s(0); z) = P(0|s(0); z) − δ0,s(0)

P(0|0; z)
. (3.10)

It then follows that

R(0|s(0); z) =
∞∑

n=0

RN (0|s(0))zN = 1

1 − z
F(0|s(0); z), (3.11)

and

S(z) =
∞∑

n=0

SN zN =
∑′

s(0)
R(0|s(0); z) = 1

1 − z

∑
s P(s|0; z)

P(0|0; z)
. (3.12)

Hence, in order to determine PN in equation (2.1) via S(z) we only need to determine P(0|0; z)
and the normalization

∑
s P(s|0; z). We proceed with this determination in the next section.

4. Properties of the intermittent random walk

Since the searchers in our model move independently, it suffices to focus on the properties of
the walk of an individual searcher. The probability P(s|s(0); n) of being at site s after n steps
obeys the recurrence relation

P(s|s(0); n) = α

2
[P(s − 1|s(0); n − 1) + P(s + 1|s(0); n − 1)]

+ (1 − α)

2
[P(s − L|s(0); n − T ) + P(s + L|s(0); n − T )] (4.1)

for n = 0, 1, 2, . . . , N . Jumps between nearest-neighbouring sites occur in one unit of time,
while long-range jumps over distance L require an integer time T . Equation (4.1) therefore
defines a non-Markovian process with a memory. Since the intermittent random walks are
homogeneous so that P(s|s(0); n) = P(s−s(0)|0; n), without loss of generality we henceforth
set s(0) = 0.

The Fourier-transformed generating function

�(k, z) =
∑

s

exp(iks)P(s|0; z) (4.2)
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can easily be calculated by multiplying both sides of equation (4.1) by exp(iks) and zn and
summing over all substrate sites s and time n. We readily find that

�(k, z) = [
1 − αz cos(k) − (1 − α)zT cos(kL)

]−1
. (4.3)

Consequently, the lattice Green function (or site occupation generating function) of the
intermittent walk is given by

P(s|0; z) = 1

π

∫ π

0

cos(ks) dk

1 − αz cos(k) − (1 − α)zT cos(kL)
. (4.4)

One of the two quantities required for S(z) in equation (3.12) follows immediately from
equations (4.2) and (4.3) by setting k = 0,∑

s

P(0|s; z) = �(k = 0, z) = (
1 − αz − (1 − α)zT

)−1
. (4.5)

This leaves only the evaluation of P(0|0; z) for the calculation of S(z) and consequently of SN

and PN (cf equation (2.1)). We shall return to this calculation and to our goal of maximizing
the detection probability of the target presently, but first we briefly digress to obtain some
associated interesting properties of the underlying distribution P(s|0; n).

4.1. Second and fourth moments of the distribution P(s|0; n)

Although we do not use them directly in the evaluation of PN , it is instructive to explicitly
consider the second and the fourth moments of the distribution function P(s|0; n) because they
provide some insight into some aspects of optimal behaviour.

Consider the second moment of the distribution. One expects that at long times the mean
square displacement of a particle will be diffusive, that is, that the second moment s2(n) for a
particle starting from the origin should grow proportionally with time n. The overline denotes
an average over many trajectories. We differentiate �(k, z) of equation (4.3) twice with respect
to k and set k = 0 to find that the generating function of the second moment obeys

s2(z) =
∞∑

n=0

zns2(n) = αz + (1 − α)zT L2(
1 − αz − (1 − α)zT

)2
. (4.6)

As z → 1− the leading contribution to the generating function is of order O[(1 − z)−2], which
leads to linear growth in time, s2(n) = 2Dn, with diffusion coefficient

D = 1

2

α + (1 − α)L2

(α + (1 − α)T )2
. (4.7)

Note that for α = 1 and α = 0 this reduces respectively to the standard results D = 1/2 and
D = V 2/2.

One must now distinguish between two situations, the cases T = 1 and T > 1. In the
first case, when the flight over distance L requires one unit of time precisely as does a nearest-
neighbour step, D is a monotonically decreasing function of α. It is largest when α = 0,
when all jumps are flights over a distance L requiring a unit of time, and achieves its minimal
value 1/2 when α = 1, when there are no long-range flights. This is, of course, the behaviour
one would expect, since in the case T = 1 the particle is always on the lattice. On the other
hand, when T > 1 and the particle spends some portion of its time off-lattice, the situation is
completely different. Here, D in equation (4.7) shows a non-monotonic behaviour as a function
of α. Differentiating equation (4.7) with respect to α, we find that D has a maximum when

α = α(2) = T + L2(T − 2)

(T − 1)(L2 − 1)
, (4.8)
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where the superscript ‘2’ stresses that this value of α only corresponds to the maximum of the
second moment and not necessarily of other moments. Note that 0 < α(2) < 1, which implies
that here, contrary to the case T = 1, the greatest mean square displacement is achieved by an
intermittent random walk, that is, one that includes nearest-neighbour steps as well as off-lattice
flights over a distance L. The value of D corresponding to α = α(2) is given by

Dmax = 1

8

(L2 − 1)2

(T − 1)(L2 − T )
. (4.9)

For large L, Dmax may be made very large since Dmax ∼ L2/T = LV . On the other hand, there
is a penalty to pay, since s2(n) = 2Dn is an asymptotic result which holds only for sufficiently
long times that increases with increasing L. By increasing L and optimizing α we can thus
make D arbitrarily large, but to observe this regime we will have to wait a progressively longer
time.

Consider next the fourth moment s4(n) of the distribution function. Its generating function
obeys

s4(z) =
∞∑

n=0

zns4(n) = 6
(
αz + (1 − α)L2zT

)2

(
1 − αz − (1 − α)zT

)3 + αz + (1 − α)L4zT(
1 − αz − (1 − α)zT

)2 . (4.10)

The leading behaviour of the generating function near z → 1− is of order O[(1 − z)−3], so that
at sufficiently long times s4(n) is quadratic in n,

s4(n) ∼ 3
(
α + (1 − α)L2

)2

(α + (1 − α)T )3
n2. (4.11)

We point out again that the coefficient of n2 shows a completely different behaviour depending
on whether T = 1 or T > 1. In the former case, when particles spend all of their time on the
lattice, it is a monotonic function of α with a maximum at α = 0. On the other hand, for T > 1
the coefficient is again a non-monotonic function of α. The maximum is achieved at

α(4) = 2T + L2(T − 3)

(T − 1)(L2 − 1)
. (4.12)

For T > 2, the extremum α(4) is also well within the intermittent regime.
Note that α(4) �= α(2) (or more precisely, α(4) < α(2)). This alerts us to the fact that there

is not a single ‘optimal choice’ of α. The choice clearly depends on the property or strategy
that one wishes to optimize, and for more complex properties it is expected to depend on the
maximal search time N . We are clear on the particular strategy that we wish to optimize,
namely, the probability that the target will be detected by at least one of the searchers by time
N . It is unlikely that either α(2) or α(4) provides this optimization. Indeed, we find below that
the optimal detection strategy is achieved with an N-dependent value of α that also depends on
the jump velocity.

4.2. Probability of return to the origin and expected number of distinct sites visited

We now return to the calculation at the end of section 4 to find the generating function of
the expected value of the number of distinct sites visited by an individual searcher. With the
substitution of equation (4.5) into (3.12), this generating function is given by

S(z) = 1

(1 − z)
(
1 − αz − (1 − α)zT

) 1

P(0|0; z)
. (4.13)

We thus turn to the analysis of P(0|0; z).

8
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We start by noting that equation (4.4) can be written as

P(s|0; z) =
∫ ∞

0
dt e−t Is(ζ1, ζL), (4.14)

where Is(ζ1, ζL) is a particular two-variable case of a multi-variable generalized modified
Bessel function [19],

Is(ζ1, ζ2, . . .) = 1

π

∫ π

0
dk cos(ks) exp

[ ∞∑
m=1

ζm cos(mk)

]
, (4.15)

in which ζ1 = αzt , ζL = (1 − α)zT t , and all other ζm are zero. Furthermore, I0(ζ1, ζL) obeys

I0(ζ1, ζL) = I0(αzt)I0((1 − α)zT t) + 2
∞∑

l=1

IlL (αzt)Il ((1 − α)zT t). (4.16)

Substituting this latter expansion into the integral on the right-hand side of equation (4.14) with
s = 0, performing the integration over t , and using the integral representation

In(p) = (−1)n

π

∫ 1

−1

dx√
1 − x2

e−px Tn(x), (4.17)

where the Tn(x) are Chebyshev polynomials of the first kind, we find that occupation generating
function for the site s = 0 reads

P(0|0, z) = 1

π2

∫ 1

−1

dx√
1 − x2

∫ 1

−1

dy√
1 − y2

[
1 + 2

∑∞
l=1(−1)Ll+l TLl(x)Tl(y)

]
1 + αzx + (1 − α)zT y

. (4.18)

Next, expanding the kernel in a series of Chebyshev polynomials,

1

1 + αzx + (1 − α)zT y
= 1

αz
√

τ 2 − 1

[
1 + 2

∞∑
n=1

(−ξ)n Tn(x)

]
, (4.19)

where

τ = τ (y) = 1 + (1 − α)zT y

αz
� 1, ξ = τ −

√
τ 2 − 1, (4.20)

we obtain a closed-form expression for P(0|0, z) convenient for further analysis,

P(0|0; z) = 1

παz

∫ 1

−1

dy√
1 − y2

√
τ 2 − 1

1 − ξ 2L

1 + 2ξ L y + ξ 2L
. (4.21)

Note that it is straightforward to perform the integral in equation (4.21) in the two ‘pure’ limits
α = 1 and α = 0. In the first case we have τ = 1/z, ξ = (1 − √

1 − z2)/z, and

Pα=1(0|0; z) = 1

π
√

1 − z2

∫ 1

−1

T0(y) dy√
1 − y2

[
1 + 2

∞∑
l=1

(−ξ L)l Tl(y)

]
= 1√

1 − z2
. (4.22)

On the other hand, when α = 0, we have τ = ∞, ξ = 0, and

Pα=0(0|0; z) = 1

π

∫ 1

−1

dy√
1 − y2

1

1 + zT y
= 1√

1 − z2T
. (4.23)

We notice that for T = 1 the two latter expressions coincide. One might therefore expect that
P(0|0; z) and the expected number of distinct sites visited will be non-monotonic functions of
α.

In the next two sections we explicitly calculate P(0|0; z) and ultimately the desired target
detection probability for intermittent walks.

9
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5. Particular case: Lindenberg–Shuler intermittent random walks with L = 2 and
T = 1, 2

To highlight the optimization procedure, consider first the simple case of intermittent random
walks with nearest-neighbour steps and jumps over a distance L = 2, first studied by
Lindenberg and Shuler in [20] and [21]. In this case the integrals in equations (4.4) and (4.21)
can be performed explicitly. For L = 2 (and T = 1 or T = 2), the generating function for the
probability of being at the origin is given by

P(0|0; z) = 1[
1 + (1 − α)zT

]
⎛
⎝ λ2

λ2 − λ1

1√
1 − λ2

2

− λ1

λ2 − λ1

1√
1 − λ2

1

⎞
⎠ , (5.1)

where

λ1 = − αz

2
[
1 + (1 − α)zT

]
⎡
⎣1 +

(
1 + 8(1 − α)zT

[
1 + (1 − α)zT

]
α2z2

)1/2
⎤
⎦

λ2 = − αz

2
[
1 + (1 − α)zT

]
[

1 −
(

1 + 8(1 − α)zT (1 + (1 − α)zT )

α2z2

)1/2
]

. (5.2)

Consequently, in this particular case the generating function of the expected number of distinct
sites visited is given by the closed-form expression

S(z) =
[ (

1 + (1 − α)zT
)

(1 − z)
(
1 − αz − (1 − α)zT

)
]⎡⎣ (λ2 − λ1)

√
1 − λ2

1

√
1 − λ2

2

λ2

√
1 − λ2

1 − λ1

√
1 − λ2

2

⎤
⎦ . (5.3)

To find the large-n behaviour of the distinct number of sites visited we need to consider the
limit z → 1− of the generating function. Recall that we expect a leading behaviour of the form
Sn ∼ f (α)n1/2 because ours is basically a one-dimensional random walk, albeit intermittent.
Not only do we still need to determine f (α), but we also need to ascertain the importance of
subsequent terms. A straightforward but tedious calculation leads to the expansion

S(z) =
(

2(4 − 3α)

α + (1 − α)T

)1/2 1

(1 − z)3/2 − 4(1 − α)

α1/2(4 − 3α)1/2

1

(1 − z)
+ O

(
1

(1 − z)1/2

)
. (5.4)

Clearly, for any given value of z no matter how close to unity, this ‘blind’ expansion in powers
of (1 − z) only makes sense if α > 0 since the second term diverges at α = 0. This is thus only
a valid expansion from which asymptotic behaviour can be extracted if 0 < α � 1. At α ≡ 0
one must go back to the original function S(z), set α = 0, and then expand:

S(z) =
(

2

T

)1/2 1

(1 − z)3/2
+ O

(
1

(1 − z)1/2

)
. (5.5)

That α = 0 is a special value that can lead to discontinuities was already noted in [20]. It is
the only value of the intermittency parameter that absolutely excludes every other site from the
random walk.

Inverting S(z) in equations (5.4) and (5.5) at times n = N we find that for the intermittent
random walk with nearest-neighbour steps and jumps to next-nearest-neighbour sites the
leading large-N behaviour of SN is

SN = f (α)N1/2 − c(α) + O
(

1

N1/2

)
. (5.6)

10
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Figure 2. (a) Plot of SN /
√

N versus α at N = 1000 for T = 1 and 2. Solid lines are analytic
results, equation (5.6), while symbols denote the results of Monte Carlo simulations. (b) Plot of the
inverse of the non-detection probability, 1/PN , versus α for ρ = 0.1 and N = 1000.

Reflecting the discontinuity in α described above, the functions f (α) and c(α) are
discontinuous at α = 0,

f (α) =
⎧⎨
⎩
(

8(4 − 3α)

π(α + (1 − α)T )

)1/2

for 0 < α � 1,

(8/πT )1/2 for α ≡ 0,
(5.7)

and

c(α) =
⎧⎨
⎩

4(1 − α)

α1/2(4 − 3α)1/2
for 0 < α � 1,

0 for α ≡ 0.
(5.8)

Note that this ‘discontinuity’ should be viewed with appropriate caution, since SN at any
fixed N should be a smooth function of α. The discontinuous forms of equations (5.7) and (5.8)
arise because we are describing an asymptotic behaviour that is strictly valid only in the limit
N → ∞. In fact, the use of the α > 0 results is only appropriate as long as the second term in
SN does not dominate the first. In any case, these considerations require that we recognize the
α = 0 discontinuity explicitly.

The question of interest is whether SN has a maximum and consequently PN a minimum
as a function of α, that is, whether it is possible to design an optimal search strategy through
the choice of the intermittency parameter. In figure 2(a) we plot the asymptotic result for the
function SN , equation (5.6), and the results of Monte Carlo simulations, for N = 103 and
T = 1 and 2 as a function of α. We see that indeed SN is a non-monotonic function of α, and
that the asymptotic form in equation (5.6) is in excellent agreement with the numerical data.

Our aim is to analytically determine the value of α which maximizes SN . Since we expect
α > 0, we use the appropriate form of the coefficients f (α) and c(α) in equation (5.6). While
the coefficient f (α) of the leading term in N is non-monotonic, it jumps from its smallest
value at α ≡ 0 to its largest value at α = 0+. For such small α we must retain the second term.
Differentiating SN (both contributions) with respect to α to find the maximum readily leads to
the optimal value

αopt(N) ≈ T

(
2π

(4 − T )2 N

)1/3

(5.9)

with additional contributions of lower order in N . Consequently, the maximal expected
number of sites visited by the intermittent random walk is attained at α = αopt(N) defined

11
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by equation (5.9),

max
α

SN =
(

32N

πT

)1/2

− (4 − T )1/3

(
T 1/6 + 1

2T 4/3

)(
32N

πT

)1/6

+ o
(
N1/6

)
. (5.10)

Let us recap the ingredients of this result and analyse its significance. Because the optimal
α for the most efficient search is positive definite for any given N , we needed to use the
asymptotic results for SN that included the c(α) contribution. The actual asymptotic number
of distinct sites visited in this optimal search, maxα SN = (32N/πT )1/2, is simply the value
of the first term in equation (5.6) with the α > 0 form in equation (5.7), when α is set to zero.
However, the only reason we could use this form is precisely because α is not identically zero.
The actual contribution of the second term to SN turns out to be negligible, since it contributes
in equation (5.9) only to order N1/6, but we need the existence of this term to obtain the correct
asymptotic result.

In this particular case of a search for an immobile hidden target by an intermittent
random walk with nearest-neighbour and next-nearest-neighbour steps the best strategy can
be summarized as follows. If we are ready to wait a sufficiently long time N but want to be
sure that at that moment of time we will attain the lowest possible non-detection probability PN ,
we choose α = αopt(N) = T (2π/(4 − T )2 N)1/3. Note also that this strategy is quite efficient
considering that nearest-neighbour and next-nearest-neighbour steps are not very different from
one other. The enhancement of the expected number of distinct sites visited through this
strategy is a factor of 2/

√
T . This effect is exponentiated in the non-detection probability,

so that it is dramatically apparent in figure 2(b).

6. Optimal search strategy for arbitrary L

The analysis presented in the previous section for a particular case can be generalized to
arbitrary values of L and T by following essentially the same reasoning. The algebraic
derivations that lead to the results are longer and more tedious, but the results are similar in
form to those obtained previously. The outcome, as we shall see, is that the detection probability
enhancement can be made much greater than that obtained under the restrictions that L = 2
and T = 1 or 2. In fact, it can be improved by orders of magnitude.

As before, to calculate the generating function for the distinct number of sites visited we
need to determine the generating function for the probability of being at the origin. The integral
in equation (4.21) can no longer be done in closed form for arbitrary L and T , but it is possible
to carry out an expansion in powers of (1−z) and retain the terms necessary for the computation
of SN . As before, the cases 0 < α � 1 and α ≡ 0 need to be treated separately because the
latter is still a special case. For α ≡ 0 the expansion is fairly straightforward and leads to

Pα=0(0|0; z) = 1√
2T

1√
1 − z

+ O
(√

1 − z
)

. (6.1)

The calculation is more elaborate for 0 < α � 1. It is essential to retain not only the leading
divergent contribution in (1 − z) as z → 1−, but also the contribution independent of (1 − z).
This is because ultimately once again we need the contributions of O(N1/2) as well as O(N0)

to SN to arrive at the correct optimization. We find

P(0|0; z) = 1√
2 (α + (1 − α)T )

(
α + (1 − α)L2

) 1√
1 − z

+ I (α, L) + O
(√

1 − z
)

, (6.2)

12
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where

I (α, L) = 1

πα

∫ 1

−1

dy√
1 − y2

√
τ 2

1 − 1

⎛
⎝ 1 − ξ 2L

1

1 + 2ξ L
1 y + ξ 2L

1

−
L
√

τ 2
1 − 1

L2(τ1 − 1) + (y + 1)

⎞
⎠ , (6.3)

and τ1 and ξ1 are the values of the functions τ and ξ of equation (4.20) at z ≡ 1. Substitution
into equation (4.13) leads to

S(z) =
(

2
(
α + (1 − α)L2

)
(α + (1 − α)T )

)1/2
1

(1 − z)3/2
− 2I (α, L)

(
α + (1 − α)L2

)
(1 − z)

+ O
(

1

(1 − z)1/2

)
, (6.4)

which implies that at n = N � 1 the leading asymptotic behaviour of the expected number of
distinct sites visited by an intermittent random walk is

SN =
((

α + (1 − α)L2
)

(α + (1 − α)T )

)1/2 (
8N

π

)1/2

− 2I (α, L)
(
α + (1 − α)L2

) + O
(

1

N1/2

)
. (6.5)

Finally, the integral I (α, L) is not available in closed form, but its important contribution to
the problem can be estimated. For sufficiently large N it is small everywhere except for the
neighbourhood of α = 0. To extract the leading contribution for small α we change the variable
of integration in equation (6.3) from y to the auxiliary variable u = (1 + (1 −α)y)/α, in terms
of which

I (α, L) = 1 − α

π
√

α

∫ (2−α)/α

1

du

(u − 1)
√

(u + 1)(2 − α(u + 1))

×
(

1 − ξ 2L
1

(1 − α)(1 + ξ 2L
1 ) + 2(αu − 1)ξ L

1

− L
√

u + 1√
u − 1(α + (1 − α)L2)

)
. (6.6)

The singularity at the lower limit of integration u = 1 is integrable for any value of α.
Furthermore, the integrand vanishes sufficiently quickly to ensure that it is integrable as
u → ∞. Hence, we may set α ≡ 0 everywhere in the integrand and we can extend the
upper integration limit to infinity. This provides the leading small-α contribution,

I (α, L) ∼ (1 − α)g(L)

π
√

α
, g(L) =

∫ ∞

0

dφ

sinh(φ)

(
coth(Lφ) − 1

L
coth(φ)

)
. (6.7)

The subsequent reasoning now proceeds exactly as in the previous section. We wish to
determine the value of α that maximizes SN . Again, we expect that this α is small but strictly
positive, so we focus on the result (6.5). Maximizing SN with respect to α we find that

αopt(N) � L7/3g2/3(L)

V 1/3(LV − 1)2/3

1

(8π N)1/3
. (6.8)

The resulting asymptotic form for the distinct number of sites visited finally is

max
α

SN = (LV )1/2

(
8N

π

)1/2

− γ (L)

(
8N

π

)1/6

+ o
(
N1/6

)
, (6.9)

where

γ (L) = (4π + 1)

2π2/3

(
V g4(L)L5(LV − 1)2

)1/6
. (6.10)

This is the generalization of equation (5.10). It is valid when αopt(N) 
 1, that is, when
N � g2(L)L2, which ensures that the first term in maxα SN is dominant. Note that the leading
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Figure 3. (a) Plot of SN /
√

N versus α for L = 5 at N = 10 000, for T = 1, 2, 3, 4, 5. Solid
lines are analytic results, equation (6.5) with (6.7), while symbols denote the results of Monte Carlo
simulations. The larger symbols denote the positions of the maxima. (b) Plot of the inverse of the
non-detection probability, 1/PN , versus α for ρ = 0.01 and N = 8000, 10 000, and 12 000.

contribution to SN is again the outcome of setting α = 0 in the first term of (6.5). The second
term ultimately does not contribute to leading order in N , but, to stress once again, we were
required the use the α > 0 result (6.5) because αopt(N) is positive definite.

In figure 3(a) we plot our analytic result (6.5) using the estimate (6.7) (lines) as well as
the results of Monte Carlo simulations (symbols) as a function of α. The results are shown
for L = 5 and various values of N and T , and the agreement is again excellent. The larger
symbols in the figure denote the positions of the maxima, which are well captured by our
analytical curves. Figure 3(b) shows the inverse of the associated non-detection probability for
various values of N .

The essential result of this section is the very large enhancement of the target detection
probability that is possible by the appropriate N-dependent choice of the intermittency
parameter compared to the outcome for the ‘pure’ random walks with α = 0 or 1. The leading
term in equation (6.9) contains the factor

√
LV which may be large and may therefore lead to

a substantial decrease in the probability that the target has not been detected up to time N . For
example, for L = 5, T = 1, and N = 10 000, with a density of searchers as low as ρ = 0.01
(cf figure 3(b)), the non-detection probability for the ‘pure’ cases is PN ≈ 0.2. On the other
hand, if we choose, α = αopt(10 000) ≈ 0.07, we find that the probability that the target has not
been yet detected up to this time is PN ≈ 0.0003, i.e., three orders of magnitude smaller. Note
finally that in one dimension for fixed L the optimal search strategy involves a progressively
smaller fraction of nearest-neighbour steps as N is increased.

7. Conclusions

We have studied the search kinetics of a single target hidden on a one-dimensional regular
lattice by a concentration of ‘searchers’ performing intermittent random walks; that is, at each
tick of the clock, each searcher has a choice of stepping on a nearest neighbour with probability
α, or flying off-lattice in either direction with velocity V over a distance L with probability
(1 − α). We have determined the probability PN that the target remains undetected up to the
maximal search time N , have established that PN is a non-monotonic function of α, and that
in fact it has a sharp minimum at an N-dependent value of α. Consequently, we have shown
that the search efficiency can be dramatically enhanced, by orders of magnitude, by choosing
α appropriately.
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We close this paper with some observations and problems for future research. If we are
at liberty to choose L, we may increase the number of distinct sites visited within a given
time interval N by picking an N-dependent value of L, cf equation (6.9). On the other hand,
equation (6.9) is a parabolic function of L, which implies that there should be an optimal L
for any fixed N . Namely, making L too large for fixed N would be counterproductive since
the searchers would spend most of their time flying off-lattice. On the other hand, a value
of L that is too small would detain the searchers in already well-explored regions and delay
the exploration of new ones. This issue requires a more subtle analysis and a more intricate
optimization procedure, to be discussed elsewhere [15].

Our model can be straightforwardly extended to higher dimensions. In two dimensions
there is also a value of α that maximizes SN and that depends on the maximal search time N ,
as seen in the numerical results shown in figure 4. In three dimensions and higher, we expect
an N-independent value of α to maximize SN .

The results in this paper were obtained for the case of perfect detection (q = 1), that is,
once a searcher lands at the site occupied by the target it detects it with certainty. It is easy to
show that in the general case when detection of the target upon encounter is less than certain
(0 � q < 1), the probability that the target remains undetected up to time N is

PN = exp(−ρQN ), (7.1)

where QN is determined via its generating function,

Q(z) =
∞∑

N=0

QN zN = 1

1 − z

q[
q P(0|0; z) + 1 − q

] ∑
s

P(s|0; z). (7.2)

In low-dimensional systems, i.e., in one and two dimensions, P(0|0; z) diverges as z → 1−,
and consequently, in the limit N → ∞, QN converges to SN so that the leading large-N
behaviour will be independent of q provided that q > 0. In three and higher dimensions the
leading behaviour will depend on q .

An interesting extension of our model may be a situation in which the target itself moves
randomly. It is known, however, that if this motion is diffusive (or sub-diffusive) in low
dimensions, the long-time asymptotic form of the probability PN is exactly the same as when
the target is immobile (see [22] and also [23, 24]). Consequently, in low dimensions in the
large-N limit, the search for a diffusive (or sub-diffusive) target by searchers performing
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intermittent random walks will proceed in exactly the same way as determined in this paper
for the case of an immobile target.

Finally, we remark that a sensible extension of this model would be to introduce the
possibility of jumping, with a given velocity over arbitrary distances l = 1, 2, 3, . . ., with
probability pl . A robust approach would be to search for the distribution pl that minimizes the
non-detection probability PN .
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